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CEAPTER I

adha -

TUTY AT pQ =

-k Ll E P -
a TERTTTD et
do P ,:;.CDD Vi

This paper invesiigzates “he sseillatory properties of ssiutions to

B

-~ o b RIS I oy SRR 2R S . o . FRN - e ST
Certain self-adjcint linear diffsrential eqaaticns of tis fourth order.

. B -
my. 2 Y o PR g AL . .L.-_- - b PR S A3 AT S o A
fals tople ras been sbudied by Barreswt {1,217 Leighton and Nenari [41,
. ' . - 2 T T Y ¥ A IR " ez FoTL T s
and obhers. It is shown that the Tosilts of sestion thmes of ial can be
P T R I o A ool % o e e o e T e, SN 1 .
chtalrzed wndsr waaker hyy L assumed there, n at least one
] J T P <« L TS rve
p...a@e LEW fsou‘gvgs NCRINE Seiiy CSCAnIQUEs
ed'in “under the caned 5is
. Sul ar the weszkoned JDOU..-CU S
e ad 4 3 - T AR AP g 2 A% ey m S P T s
A ger. al selleadjoint linear differential cguatisn of the fowrth

order is of the form
1.1) o (e {x) 1"« [als)yifx)l’ s (%) (%)
o LONESTIRXI S LY e DAXYIX)
waere r and p  are corbinucus and r(x) > 0 for 2i1l x on the intere

val under comsideration and g has a continuous derivative.

definitions,

o 1 L cmy S o A 3
DEFINITION 1.i. A eguaticon (I.1) ie
= » =5
1 T s s . S e e o iy 2 = & . -
said tc be cscillatory on the Irterwal aere a> 0, If it has
== E2E R n i IS

an infirite number of perc irterval,

of this paper.

[

The numbers wiich eppear in trackels conrespond o the Eibiicgraphy

gy s



ot W«UHM )

: 2
DEFINITION 1.2, 4 sclution o0 a differential equation (1,1) i

5&a

C)

A Y

aid o be nonooeillatory

on (a, =), a> 0, if it has only a finite
number of

zaros on the interval.

DEFINITION 1.3. A differential sguabio

n is sald tc be oscillatory
if at least one of its solutlons is oscillatory, and nonosc

iliatory if all

of its solutions are noncscilialtory.

DEFINITION 1.h. A solution to a differential equation is said to

have a zero of order X a

2 Eo~ht >0 if the solution and its first

k = 1 derivatives are

zero at b o. In theorems cencerning the numbser of

zeros of a solution, a zero of order

P

will be counted as k

ZerCse

In sections -three and four this paper will concern itself with a

partlcular class of the differcntial equations of the type (1.1). This
class will be denoted by F and will, consist of all eguaticns of

the form -
(1.1) with the property that if y is a solution of the equation

and
y(b) =0 =y'(b) , b>0,

then v(x) # 0 fer a1l x in (0,b) or for

a1l x in (b, =) 3 ! (b) = y"(5) = O then

moreover, if y(b) =
y(x) #0 for x#Db.
In the last chapter of this

tnis paper partlcular nonempty subclasses
of F will be examined,

II. PRELIMINARY RESULTS

We now consider some properties of general fourth order linear
differential equations,

THEOREM 2,1. Given three, not necessarily distin

s posiliive



N eE et

numbers, there exicis a solution to (1.1) havine zecros at these tuhrce

nunbers,
PROCF. If all threse zeros coincide then the result follows fronm
the existence theorem [L]. Otherwise let Y15 Voo y3, and yh be

linearly independont solutions of (1.1) and let a,, a.,, and a be
Y .’ 2’ h

39
olutions of the system

!
[A%
’fl aiyi(xj) =0, (J =1, 2 3) 3

or the system

N
Z a,y. (k)(x-;) 05 (k = 091) P)
i=1 ~ -

according as tuu t Tee p01nts egre distizct or two of them ¢oircide. Each
system is a homogenecus system of three ecuations in four uvnknowns and a

nontrivial soluticn always exists. Then the function y  defined by

v(x) = 2 a, 15 (x) is a sclution having the threc desired zercs.
i=1

LEMA 2.2, Let uw and v bg of class C' in (a,b) and jet v

have no zercs in this interval. If u has two distinet zeros, sa ay

znd a, in (a,b), then the funstion S(x) = v{x)u'(x) = u(x)v'(x) mus rust

2
have a zero in (al,az).
PROOF. Let g(x) = u{z)/v(x) . Then gt (x) = [v(x)u (x)

d.

- u(X)V‘(X)l/[V(i)J'Z = S(X)QV(X)]-Zo So ngig (x)ax = al. 2 s(x)[v{x))%6x.




L

The integral on the left may be evaluated by the fundamental thecorem of

integral calculus. Since g(al) = g(az) = 0 , then ‘é' 2
T . 1

S{x){v{x) ]-2dx =0,

This implies that S have at least one zero in (al, as)e

I.h

i (a,0) and let

“THEQOREM 2.3. Let u _a_:__d_ v be__fclass c

v - have no zeros in this intervel, IT ..E (agb) u has two distinct

consecublve 2ero0s, say & and 2, then there exists a constant

such that the function =z defined by 2(x) = u(x) = pv(x) has a double
zero in (a.,,az) . o
——— Py

PROCF. These conditions exactly fit Lemma 2.2, so S must have a
zero, say X , in (81’82) . IZ u = u(:»:o)/v(xo) , them . |

Z(Xo) = Z'(XO) =0 3 that is, z has a double zero at X, e

ITI. THE NUMBER CF ZEROS OF A SOLUTION

N AT TY AT
ON AN INTERVAI

A

’

-

This section concerns itseill with the number of zeros of solutions
to equations in F . One of the most important fesults of this ssction
concerns two soluf,ior.:; to an equation in F +that have three zeros in
common.,

T}IEGPEII 3.1. _I_{‘ 71 and Yo ke two nontrivial solutions 0 an

equation in F that have three, not nocsssarily distinect, zeros in commen,

then ¥y and ¥, z2re constznt multiples of each other,

PROOF. Let +the three zeros be a, b, and ¢ where O0<a<b=<c,

The different configurations of zeros will have to be siudied in cases.



5

Cese I. All three zeros are distinet, a< b < ¢ . Since there
cre zeros at a and ¢ then ylf(b) #0 and y2’(b) # 0 . Define a
function Wy

such that w,(x) = v '(D)y,{x) = v, {(P)y. (%) -« Now w,
. 1 1 2 2 1
is a solution to the equation under consideration since it is a linear

combination of y, and y, . Notice that wl(a) = wl(b) = wi(c)
= wi'(b) = 0 , This is a contradiction to the fact.that w is a solu~

tion to an equation in F , ualess w, is identically zero., In that

1
case yl(x) = [yi'(b)/yzf(b)]yz(x) - So y, and y, are constant
multiples. _ |

Case II. Two of the zeros coincide. There are two such cases,
but it will be sufficient to examine one of them. Let ‘a =b<ec.
Therefore fyi(b) = yl'(b) = yi(c) = 0 and y2(b) = y2'(b) = yz(c) =0,
If it were the case that yl"(b) = 0 or that yz"(b) = 0 , then the

h PR

: 4 R e
uzation wder gonsideration b) # O and

o}

.+ So gy ™
ke

yz“(b) # 0. . Define a function w, by Wz(X) = yi"(b)yz(x)
- yé"(b)yi(x) . Now w, is a solution to the equation under considera-
tion, -and wz(b) =‘w2‘(b) = v ®(b) = wz(c)‘= 0 . This is a contradiction

to the fact that w, is a solution to an equation in F ; unless w

2 2
is identically zero. In that case y1<x) = [yi"(b)/yé"(b)]yz(x) . So
¥y and y, eaxre constant multiples. - S

Case III. All three zeros coincide, a =b = c¢ . Therefore
y1(0) = 3,(B) = 7yn(6) = 0 end y,(5) = ¥,'(0) = y,(0) = 0 . Intnis
caée both ¥1 and y2: are multipleé of the solution y satisfying the
conditions y(b) = y'(b) = y*(b) = 0 and (ry")'(b) =1 . Hemce ¥y

and y, are constant multiples.
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CCROLLARY 3.3. EE T and v are two nontrivial solutions of an

ecquation in F with zeros at a2 and 'b in commen, then the nwmber of
= Hiuib solos Sv f] ot

y

zeros of u in (a,b) differs from the number of zeros of v in (g,b)

bz at most one.

PROOF. Note that neither u nor v may have any muitiple zeros
in (a,b) . If one of the solutions, say u , had two or more zeros in
excess of the number that the other, v , hadin {a,b) , then u would
have two consecutive zeros not separated by v . By Theorem 3.2 the zeros
of u and v must separate, which is a contradiction. Thus the number
of zeros of u and v in (a,b) may differ by at most cne.

.The following result is useful before reducing the restrictions

of Theorem 3.2,

ILEMMA 3.4, If u and v are two nontrivial solutions of

|8

equation in F and sither the zercs of u separate the zeros of v .in

(a,ak) or u gnd’ v have a zero in common in (a, ak) s for O<a<ay,

but v does not separat:s the T.id consecutive zeroes, & 2nd g of

flediiind [madeed Kl ——

v , then the zeros of u do not separzie the zeros of v in (ak+l’ w},

Further, u and v have no zeros in common in (ak+l’ ®) ,

PROCF. Each time the zercs of u and Vv separéte_each other, the
linear combiration z(x) = u(x) - pv(x) , where L is a nonzero comstant,
has a single zero invthé opeﬁ irterval bounded by consecutive zeros of.
one solution which are separated by a zefo of the other soluticn. Now
if the zeros of u and v separate one or more imes in (ak¥1’ ®) ,
then z has a single zero in (a,ak) and (ak*l,w) . However, u is

nonzerc in (ak, ak+1) o Dy Lemma 2.3 there is a p , such that 2z has



Hence,. u and v mnay not separatec or have g

a double zero in (a,ak*l) ; but this contradicts the fact that 2z it a

solution to an equation in ¥ T;cn it must be the cazc that 2 hLe

°

]

o om s e e o

= 2 o
Zut . hos LAnZLL ACT08 1x (q,

S )
©
tlJ

< -~ iy I
no single zeros in .(ak¢lg‘ .
if u and v scparate in the intervael or if they have a zero in commor.

*08 in ccmmon in (akﬁl’ ®;

‘.1

The following lemua  results from the seme argumant.

i

LE2A" 3. Lt. If the zeres of u and v soperate ex iF w and v
have a zero in common in (b b) and v(x) >0 in bk k#ll s ¥hore
bk and bk*q are'consecutive zeros of v, then the. 5208 of u and Vv

- 220 o — =
do not cparatc in (O,pk) Ffurther w and v have no commen zcros

These lemmas are used in the proof of the following theorem.

THEOREM 3.5, Let u and v Dbe two nontrivizl solutions of an

- SeEER

GOLaEiOﬁ in F which vanish at somz a> 0 ,
—a—-———- w—cme

&
-y
=
f\
d
P
O
-

%)

a<b<e, and, n 'aﬁd m denote the numbor of zeros of uw 2nd v,

a,b] , then n=2<nm<n+ 2,

Iy
L)

, 4 'Y I 4
=czpestively, in (a

PROOF. Without restriction let ¢ bz the smallest zcro of v

‘in (b, ). If wv(b) =0, then u and v have two zeros in common,

end oy Corollary 3.3 u and v differ by at most one zero on (a,b), Now
either- u arnd v both have a single ] at b or u hzs =z debzr < s
and ‘v has.a single zeT0. Ineither case n=-2<ns<n+2, If
v(b) # 0 then thore are two cases to be col cidered,

Case I, In this case u has a cincle zero at b and v nos

no zero at b, Lot w(x) be a solubica to the eguation under consider=

ation with the three zcros 2, b, and ¢ . By Theorem 3.3 the zoros: u

°



.

"

s zerss of v oamd W oom

[
o

(2,0l separate, then they differ by &2 mozt ome. Then the
and v ‘on (g,b] can diffor by at most two. Hemce n-e 2 m mo# 2,

Cage IZ. Herc uw has a doublsz zerc at b, and v has

™ 3 iy v 2 ~ - ™ 24 ! - G
abt b o Irem the aryouant in Cezs I 4% ean be scon ihah -
- ? 3 . wa, o I 3 bt ~ Py % - 7y %
De=3Smsn4 2, sines u we edditional zero at b . If uw are

; L T e B e e ' s AP T B . -
thaliy .as toree more zowves than v odn {g,b]; then w  hag ong move zeno

! L)

than v In (a,b). Now assume that wi{h) >0 and v{(bd) > 0

- Y

o - - 1 ¢ £ . ey - ’,- Yy o o
WO VvV omay have any multiple zercs in (g,bj. I a an

sive zevos of u , where a < b s then By Lomma 3.4 v may not

~

nave oxactly cze zero in (a,,bj. If v has no

faxd

ero in (a,,b) , then
s

g
£

the linear combination 2z(x) = u{x) = uv(x) has a deubls zoro in (eab)
' . -t N

i
<
o

for some 1 > Q , and 2 single

;]
i)

sanaeds the nunbap o

3

. y, R oy 3 £
P x P AT st e i e e v g o, % 3
sapos of 4 exasceds ths nunbor of zopon of

by at moib two.

han v in {a;b) is foiso,



!

As a result of this thecrem the following corollsz 1s irmmsdiate,
g ry

TORTITARY 3.6, If u and v soluticnz to an
cquation in F where w{a; = v{a) = uwi = wel = O ; 0<ea<cbeu,

and u has a double zero at b and at leact one other zoro in a,b) 3
——— — a— — — I¥4 D

then v must vanish in (a,b] .

The restrictions of Theoram 3.2 werc reduccd to form Thoorem 3.5,
Likewlse, the restrictions wlll now be further reduwzcd 4o form Thooram 3.7,

THEOREM 3.7. Let uw a

ez - s

. » o\ [ TR A s § e \
v b2 fwo nontrivial zolutdor: o mn
i BN -3, i s s

nd
equation in F for uhich ufa) = ulb) =v(a!') = v{d!) =0, O<a' <a

Gasaag

<b<b' . If n and m dencte the mumbas of zoves in [a,b] of u

and Vv, respectively, then n=-3<m<n+ 3.

PROOF. If wv{a) =0 aud and p arc tho number of zeresz of u
‘ .

[ }

and v , respectively, on . (a,b]

Now v may hevs only & single coro ab

nay havs a singls or a doublo oovre. In olthor 6nl) noe 3

I2 v(a) # 0, then 1ot w bo o soluiien %
vion with zeros at a'y e, axd b' . Then the zcroz of w oad v o

-~

Ly o o gearty c N " & EN %oy b e Oy N
] coperate and thelr mwlor differs by &b most ons. Fasbhor w o oand

[ 2maei ]

o

3
w satisfy Theorem 3.5 on (a,b] and thedr zores on thls interval nay
therefore differ by at most two. It must bo “he caso thad W has onactly
one zerc at a » If w has a single zera ot a ; then the nuwber of
zeros of W and w non [a,bl differ by at most twe. This being *as
case, then n« 3<asg n'¢ 3+ Tren in ths only case loft to bo xamined

U has a doeuble zero et a and v has mo zero at a . Tho previoua




il

argument shows that == 4L < m< n+ 3 in this cass., Assume without lozs

of generality that v{a) < 0. Let 2y and & be consecutive zeros of

a<a, , and ap and Db be consecutive zeres of wu, a <b ., By
ke L

Lemma 3.4 and 3.L', v camnot have exactly oze zero in bota (a,a.) and

(a ,b). Then for the proper choice of W  the linmear combination z{x)

b

= u(x) = pv{x) has a double zero in ons of these intervals.

If z has its double zero in (aya,), then either v has no 2sros

§e

(a-,b')e This is rot pcssible; as z. 5 a seclution tc an equation in F o
If v has two or more zexros in (a,aﬁ) and n -4 =m, then uw mast
have at least four more zeros “han Vv om (ajb]; Now let w; be a soliu=:
tion to the equation under cor:idsration with zercs ab aly ays and DbY .o
Then w, and v differ by at most one zero on (al,b} and ﬁi and m
diffor by at most two zeros on (atjblo So, uw and v will differ by

at most three zeros on (a ,bl, walsh is a contradiciion. The cass uwhers

-

%z has its double zeroc in a ,b) may b2 handled by a similar argument,
3

IV. CONJUGATE POINTS

3

by

the oseillabicon of sclutions

t

€

An important coacept in the study ¢
to equations in F 1is that of the n~th conjugate point.

DEFINITION L.l. Let y b2 a solution of ¢ equation in F  ard

supposs ¥y has ab least n « 3 zeros o, 8ps sees B3 (a = a; £ a,
S ... = %e3 2 n21) for X2 a ., The n-th conjugate peint of a is




Ll
12

the minimum value of ar+3 as y rangzes over all solutions of the sguas
= * a3 2= :

tion where y(a) = 0 . It will be written as 7_(a) .
It will Yo zeenm in Theorem Loi that the extremal solutlon ¥
desired, if in fact one exists, must have a double zZero at a ; since

any other solution with a singie zero at a and a zero at arﬂ3 nay
- . . e
) .

THEOREM L.1l. If thers exists a solution y of an eguadicn in

have at most as many zeros as y on (a, ar¢3
4

©
[o)

o
-i;j’

which vanishes a2t a and has at least n ¢ 3 zeres in [ag=). thew

there exdst n oints . : a » . Ly &nd nodp
vL:.L [0 o p n.l." ooos% ( <n1<ln2< co00 < 'n.) N » P Y

it « Cor¥eriemiend

wisc linearly independent solutions yl’ ooy ¥y of the ocouatlon wdoy

considecation with the following proportiese

(a) for each p from 1 Lo n ths funstion yﬁ has douols

zoros at a and 1. ;
:l

(b) Yo has procisely p + 3 zoros in l{a, npj :

{¢) any othor solution 2z ; whers 2{a) = O has fower then p 4 3
zeros in [a, np] o

Py

PROCF. Let v De a solutien Yo the equation under considerstion
satdcfying the conditions v{a) = v'{a) = v(a,é,ﬁyﬂ)\g 0, vi{a)»0, a
v has its first n+ 3 zerosab Gps 000y %;ﬁg(gn B8y 7 8y s ag < sae
< az':-:~ 2

f
satisiying w(a) = w'(a) = wt(e) = 0 and [ww"] (&) = 1, thon wix) > 0

an¢3> « Likewlce lot w bo a solutlon to ths sam: souation

for all x in (a, ®) . By Lomma 2.3 there 15 a constand by £ 0 that

Caucsos yb , defincd by



=M s thereiore lct o

doublc zerds ab a2 and N o This complotes part (o) of

¥

<.

ck

el

G
g

Lesung that v(x} 20 for x dn (ap_:‘gy‘ ‘?‘9*3) if 82 # 8043 °
Tlaia Lo > 0. _Zb s Ag}zﬁ}gq the casze thad B W inmbersects each positiv
arch of the curve v in (u. "-*«;2) at exactly two distinet points. If
p.U#r d:d not intersect an arch of v in (a?, ap‘,;g) » Wrm by Letma 2.3
there wbuld_ he a y.p% such that v = #pi\; would have a double zero, %
say ¥y in the intervel whore LW did not iavoroest a posi'c.i'fa aren
of v,

Now it is thz case that O < u_ xu glncs g wo v on the ine
’ ol

Ey P

terval “and "Lp.W(Yl} = v{y.) » Hemsz 0< B <, o By a similar avgue

1

Ky

0<
“p
val. Since O < up'" < s then y "w must interscct v

V3

o,
brs

®ps22%p43

‘ment if pow intorscots an arch of v more than twice, there is & &

< W that causes v < p_ w to have 2 double zero
p’ p

) o This situaiion gives the solution vix) - p,p w(x) s TO tha

diffcrential equation under consideration, double zercs at a and Yy s

end a single zero at some Y, in <’ap~>2’ 5

) wacre 0< a< ¥y <%y o
- - .

to k double zero, at ssy 3 fg a . T i
to have a e s at T My In { 525 ,E)) s if 2, wnd
_ noma A gt £ = Ll < ar g louble mow
ap"’3 arc distinct. If apée apJ*B g thon this givez v a doubls cero
S ab aw3 o S:Ln“e v alrcedy had & double zero at a it may not have any
1954
e
o 105 10 fhom thi ~ n if . .
other zeros ir (api‘y aﬁ“"3) o Thin this may only happen if 3503 % Bppy s
that is n=p .
A Y o - ok ’ -3 at
If o 42 alw3 s vaem Vv has 2 doubla, zeT0 at 2y, and ab a_‘&3
= 0 in this cass., So y_., given by (L.1), ke



But this contradicis the fact that the differential equation is in F .

So upw intersects cacn positive arch of v in (aS, ap+2) exactly two

distinct points. Notlce also that yp may have only single zeros in

(a, np) . Then y_ has twice as meny zercs on {a., a_ ,) as there are
P 3 "pe2 :

positive arches of v on the interval. Since v was assumed positive on

(ap*2’ an*B) , then ¥, has p-=- 2 =zercs on (33’ ap¢2) . It must be the

case that y? has no zeros in (ap+2’ np) » Otherwise yb will have‘a
double zero at M, 5 @ 60 in (np, aP*B) , and a zero at a . This may
not happen as the differentizl equation is in‘ F . Now yb has exacily
one zero in (ag,as) . Notice that v and w are positive in (az,aB) 5
and v(a3) =0,

If upw"wiuijnnginigrsact v in (32,33) s then rwt(a) > rvt{a) g

but rwt(a) = 0 and rvt(a) >C . If upw intersected v more than once
s .

p .

in (ap a3) , then there is a Hp** » O<p ™" <, such that v - pp%*w

P
has a double zero in (a a a double zero at a , and a single zero
_ 23 &3/ 5 3 g

to the right of a If it is the case that a = then as noted

3° pe2 | Tps3?
T

before Vp =V e hen in either case Yo has p + 3 zeros in [a, np] .

- The result is the same if v(x) < 0 for x in (ap This proves

427 ap+3) °

the (b) part of the theorem.
Let zp be a solution to the same differential equation, but
linearly independent of waere 2z _(a) = 2 =0 . Then z_'(a 0
¥y indep of ¥, ola) = z.(n) p (8 #0,
otherwise zp and yb share three zeros which by Theorem 3.1 causes them
to be linearly dependent. Now, yp and zp share zeros at a and np and

hence separate on . (a, 7 ) . By Corollary 3.3 the number of zeros of ¥y
> T p

. and z, on (a, np) may differ by at most one. Assume that Z5 has one



-y
.‘.’_b

rore zero than Y, o°B {a, nb) . Since y_ has double zeres at a and

np and 2, has only sinzle zeres, then Yy, must have at least one more

zaro on la, npl Than any other sclution that passes through the points.
This proves the final part of the theorem.
Tous y, 3e the extremel sclution e ,
fact the p=th conjugate points of Delinition haia
In the prcof of Theorem hoi the points np sepereted the zer0s of
v on (a, ») , unless possibly L4 = 3oy

the y of Theorem 4.1 has a double zero at a ; then y is a constand

miltiple of v . This yields the following result.

THEOREM h 2, If y is a solution to an ccuation in F such that

W iy %“- —~ - - .
y(a) = y! (a) ‘then the zeros of y in (a, ) ars separabed by the

Hy
(4

1§

o}

E e

points 'n (a) conjugate-to a (exﬁ’“t when the last zero o

double in mhich case it eolncides with & conjuoat pointl.

From Theorem L.l and Theoren 5.2 it would szam that thes conjugats

points are closely related to the oscillatory or nouncscillatory benavior

,.)(
0]

of the ccuation. Theoren 4.5 and Theorem L.h zhow what the relaticnszip

THEOREM L.3. An equation in F is oseillatory if, and only if,

pt——

for every a > 0 there exists

PROOF° By Definition 1.3 the equation in F is oscillabory if,
and oaly if, it has at least one osctllatory soluticn y . Since y is
oscillatofy‘it_must have an infinite number of zeros im [a, »] for any
a>0. éupposé a>0 and n 13 any pqsitive integer,j Let a, be the
i=th zero of y to the right of a . Lel u be a solution satisfying

u(a) =,u(al) = u(ai;h) = 0 . By Theorem 3.3 u will have at least n ¢ 3



16

eros in [a, ar{;] o By Theorem L.1 there exists at least n sonjugates
kL )

points of a . Since =n was an arbitrary positive inbeger, than thers
will be an infinity of coxnjugats noimts of a .

-

If there are an infinite numbsr of conjugate poirts np(a) thon by
Theoren L.l there ars solutions vo the differential sguation with arlityas
rily many éeros in (a, ) , The extremal solutions yl ghowrn in ﬁhgv
proof of the theorem will ms et nese conditions, i

o

sihow that there s a sclution with an infiniiy of meros. Ey ths clstonce

and uniqueness theorem the solutions ¥ mey bz written in the form

¥ (x) = c ulx) + ¢y,vix), waere u and v are two linearly indepemdont

. o Let K ©e the class of functions y* given oy

p man - Vi e g7
L8 2yl . v
K = iy IH P -: J = (‘;1 ¥ ‘f’;: ) 9 5 WASTS 'y;) = u‘h Y
Iilewlze let
K, = {;/-! | v o ::}
W
o8 qoyl | ¥y o K5
Ky { SR AR
(7 -, 4 y -
3 = {\I‘S/”) l J o ,,}
,K 1{ ) | .
= . e
L W [ rea)r .
The K's are equicontinuous and wniformly bou“dod classes. Thea by

a

applying Aszeoli's Thsorem [5] 4o subs

€

ts of K, h79 Kgg K3 s and Kh a
subsequence of X 1is found that converges uniformly to 2 funciicn I

.

that is a solution to the differential equation under consideration. Any
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limit point of zeros of the ¥y 's in the convergent subsequence will also
» i -
i

be zeros of Yo In Theorem 4.2 it was shown that all the yb's vanish

.in the interval \nk 19 T ; if k<p. So Y, has a zero in each of the

intervels [n _,, 7]
This result may now be used to prove the following theorem.

THEOREM L.4h. If an equetion in F is nonoscillatory, then thars

‘_}o

exists an a > 0 gsuch thab no solution of the equation has more than

three zeros in (a, =) .

PROOF. If the theorem were not true, then it would be the case that
for all a> 0 there exists a solution y , to the equation, where Y has

at least four zeros in (a, ©) , Then there exists a sequence of a;'s

g R R L e R, ek e

(0 < a < a, < ...) tending to infinity such that for each a, there is
a solution y, of the equation which has four zeros in (aiQ,“> , and

is to the right of the fourth zero of y, in (a, ©} ., Let v,

3
-

a,
i+l
be a solution to the differentizl ccuation with a double zero at fal and
another zero at 2y o By Theorem 3.7 Vi must have a zero in each of th

intervals (ap, Y (D=1, 2, eoey i =1)

ap+ 1
Since i can be any positive integer, then there will exist solu-
tions of the differential equation with a double zero at a and arbitrarily
mary zeros on (al, ©) , By Theorem L.l, there are then an infinity of
nongugdte points of aq e Therefore, by Theorem 4.3 the differential

equation in F must be oscillatory which contradicts the original asswipe-

tion., So the theorem follows.



CHAPSIR II
CAZRTAIN EQUATIONS T THE CIASS T
v . I. THE EQUATION [zy"] -« py=0

Tre pomposs of thls section is to show that the squation

i

(5.1) [ry"] -py=0,

whore ¥ and P arc contlauous ea (agg v/b, a

Q

La dn the ¢los
) 2 < - = ~x~r,3 plq ] F

3
and Nehord [1] o
LEZMA 5.1, If y i3 o wolution of (5
- ——— ﬂmmw*;a foitie g

PROOF, The Taylor sories cupension with dntogral romelador of the

Lunction »y" about the point & can bo weltion ws
o ) : 1 . .
(5.2) eyt o= Loyl e (ke a)apn], # L7 (x = tip(t)y{tias o

Notice that e.verj'thj_ng to the right of the equality is nmonnegative on the
interval (a, ») except possibly y . Then ry" is positive whensver ¥
ié vositive. since the 1:.‘;e<*ral cannot be zero. So y* must be sositive
if y is positive, =ince r 1s sirictly positive. Now y(a) is either
pesitive or zeroy if j(a) is ze.0 then the first nonzero quaci-derivative

18



s !
(5.3) {oy]

at a is positive.
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PULUTL P e

PRSUNER St
=

e LU S B { e . % TS b e g
this impliss that y'(x; >0 for all = in (a;,:'og o ALy is st
. $r 3. - N 9 iy m D gy e ™ ’ e § &
positive da (a,x) then y' mast be negative someplase im  (a,x ) 48
i
. Al

7 ) = b dd IR ¥ S . m . .
) 0, bub this is a sontradistion., Then thars cannsd by a v

x in (gw), If y remains pogitive, dhen ¢o do y' and y' . Dy
differentiation of {5.2),

i

(ry")  is chowm "E5-Remain

o
Ye¥'s

¢
v, and (ry") ars strictly

LEDA 5.1 12 ¥

!
Vo ¥ vty and  (zyt) 25 & a, < a, graal acrpcositlve mad ot oaiy

GRS R ULailG) GRAR I e e A AT R ket brialeies  tokncdend

. .
' Ao B 2y ~ - L TR B TR N P N A 2
2870, then ¥, ¥'s ¥y and {wy")  ars il strlobly mesatd

by =y . Note that -y is a solution to (5.1} if y is.

. : - N T TR S 4 - A - ' .
LEMA 5.2, If y is a zolution of (5,1) ard if there i3 a ¢ in
e 2z =% 22 2 25

for all x in (a

1
[ry"] < 0 for all x in r;aosw).
PROCF. Let =z -Dbe a solutiom to (5.1) sabisfying the conditicns of

Lemma 5.2, Let y be a funstion given by o{t) = y(ao o= b)) e oyix),
waere x )

4
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=
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20

H 1 -h :
dLriegs + = ] = (@)@, et elas o = 0 ()]

= [r(t)z"(t)] . So y savisfies the differentizl equation

o n, o .n »
(5.1') [r(ao-k c = x)7 (x)] = p(ac-r ¢ = x)y{x) =0

which is of the type (5.1). my supposition 2z satisfics Lemma 5.2. How

2(c) 20, 2'(e) 20, z%(c)Z0, and [ry*], 203 thorslore’
‘ ) o
yladzo, y(a20, yMa)20, ad =e)y*(a)l 20. S0y

‘ t s
satiofios Lemma 5.1 walch octoes y, y', 74, omd [wpn]  ovo ctulolly

» \ « s o F
positive on (2, ®) » Thom '2{%) » 0, a'{(s) <0, z#{s) >0,
' PO : . . Do N
Ir(8da(£)] <0 for all <% in (ao, ¢) o Tho imbtenvel L5 ehansl.d g

result of the transformation x = a % ¢ =t . Ioticc that a5 u Lie
creases bt rust decrcasel  and

LEMMA 5.2', If v isa

$
in (a, =) for vhich (o) 2
v . Faeri]]
[z7*] 20, o yR) <0, v'(x)=0, V”( ) 0, o lwl E)

Dm0 . -
m“’ CL’-:L X “i;'«;% (uoi C) ‘
PROCFs The proof follows divcotly fuom Lomma 5.2 12 7 45 rim
laccd by =y o Note that =y is a colution do (5.1) 42 v iz
Thooo fowr lomaas will be uccd in vho poood ol tho foilorlag

oo

TORE 543 zg v iz ooaon

B PR

y(b) = g (0) a0 znd ¥ (W) A0, yhiza

oA

2w An

(220

3 - Pl ‘;.,'—‘ vy B ez
eh lonst ona of i Intomvels  (a

s

) £nd {b, &) o211 Ao O‘*Am}:




0

0y 7 \ - s 3 < o
Case I, Letv y"b) > 0. if Lry"l, Z 0, then the condition:y

ditions f£it Lemma 5.2. Then all four of the functions arc norzero on
(aog b) °
r ) -
Case II, Let yh{b) < 0. If [xy*] 2 0, then the conditions it
Lemma 5.2's, Therefors the four i iy
Covil < 0, then Lemma 5.1 mey g 8

strietly nogotive on (b,e).
!
Ia all cases the Dunetlons 7, o'y ", and Lo are mowzero an

cithop (ao,b) or {

A AN e ;
&;E el o -i.aJ ] =t :thl y
iRy mead

- Y iieims vea

COROLLARY 5.5. Let ¥y bs . nonmimiv

PR pn - < e PO |
then all othzr zeros of y  are rocivi
nane cacm ot ot

COROLLARY 5.6. If ¥ is & no

y have at most two double zzros,

THEOREM 5,7, If y is a nonitrivial zoluiion of

y(b) = y! (b) y{b) =0 for b in {(a, ®} , then ¥y

1 .
PROOF. 1if [ry"] Z 0, then by Zemma S.1. ¥y is monzers on (b,®),
b , .
further by Lemma 5. 21 ¥y 1is nonzero on -(aa,b)° it [zvy"lb < 0, thoen

by Lemma 5.2 7 is nonzero on (a 1 5.1 y is nonzeve




g2

on (b,w). Then in all cases yi{x) ¥ 0 for x#¥ b in (aw wy, If
n.f]"] =0, then y would b2 the +wiv.zl solutior. )

OORCLIARY 5.8. Iet y bz 2 mormtolvial solution of {5.1) ard 1%
a; b, and ¢ bs numbers sush t?:.a‘i:_ao <a<b<e. If yla) = y{(b)

/
= y{c) = 0, then y'(b) &
’ —_—
THEOREM 5.9, Equation {5.1) is in ths class F
- o/ e A u...:d..- \ o--) ;n. in t!.....'.- @a—aSv °
PROOF. llary 5.4 and Theorem 5.7 give the desired results
II. ELMP

It is of interest to kacw thers ars couations of the tyms Chek) ia

the ¢lass & thav are nob ol tha iypo (S.1)e I% will bo oulficient ta

£
b
H

The mmple;b such exzimie 1s tha eonald

(6.1) y 4y s 0,

which is obviously o of the typs (S.1). ALl zoludiosns 5 tho cguation

are of the form

whc_ra the ci's ara congtants, Any soluiilon, in whlceh cu ,5 0, ivn

cuble polynomial. By the Fundamental Thoorom of Algobra, o cuble polye

norial has exactly thrse roots. Therofose overy nontrivial solutlion to

. (6.1) has at most three zeros,

Using a result of Barretvt [2], one moy comstruct examples of



equations in F that have middl
this way may be transformed into

Hy

crmations have also ba

e

R e

&1 used vy Leighton

of th
and N
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